inorganic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

The trigonal polymorph of strontium tetraborate, β -SrB₄O₇

Alexander D. Vasiliev,* Alexander V. Cherepakhin and Alexander I. Zaitsev

Institute of Physics SB RAS, Krasnoyarsk 660036, Russian Federation and Siberian Federal University, Svobodnyi st. 79, Krasnoyarsk 660041, Russian Federation Correspondence e-mail: adva@iph.krasn.ru

Received 6 May 2010; accepted 21 May 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (O–B) = 0.007 Å; R factor = 0.030; wR factor = 0.064; data-to-parameter ratio = 14.0.

The asymmetric unit of the title compound, β -SrB₄O₇, contains five Sr atoms (three located on a threefold rotation axis), twelve B and 21 O atoms. The structure is made up from BO₃ triangles and BO₄ tetrahedra in a 1:1 ratio. Pairs of BO₃ triangles are linked to BO₄ tetrahedra *via* common corners, forming chains. These chains are further linked to adjacent chains through corner-sharing, leading to a three-dimensional framework with channels running parallel to [001]. The Sr²⁺ ions reside in the channels and exhibit strongly distorted polyhedra The density of the β -polymorph is considerably lower than that of α -SrB₄O₇, which is constructed solely from BO₄ tetrahedra.

Related literature

For the orthorhombic α -polymorph, see: Block *et al.* (1964). For the physical properties of this phase, see: Oseledchik *et al.* (1995); Petrov *et al.* (2004); Zaitsev *et al.* (2006); Verwey *et al.* (1992); Machida *et al.* (1979); Pei *et al.* (2000). For other crystalline phases in the system SrO-B₂O₃ listed in the ICSD (2009), see: Ross & Angel (1991); Lin *et al.* (1999); Wei *et al.* (2001); Tang *et al.* (2008); Lapshin *et al.* (2007); Kim *et al.* (1996). For glass-phases in this system, see: Imaoka (1959); Polyakova & Litovchik (2008). For a review of B-O bond lengths in BO₃ and BO₄ units, see: Zobetz (1982, 1990).

Experimental

Crystal data

 $\begin{array}{l} {\rm SrB_4O_7} \\ M_r = 242.86 \\ {\rm Trigonal}, \ P3 \\ a = 17.145 \ (1) \ {\rm \AA} \\ c = 4.2527 \ (5) \ {\rm \AA} \\ V = 1082.61 \ (16) \ {\rm \AA}^3 \end{array}$

$$\begin{split} Z &= 9 \\ \text{Mo } K\alpha \text{ radiation} \\ \mu &= 11.19 \text{ mm}^{-1} \\ T &= 296 \text{ K} \\ 0.40 \times 0.25 \times 0.18 \text{ mm} \end{split}$$

Data collection

```
Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
T_{min} = 0.095, T_{max} = 0.242
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.030$	
$wR(F^2) = 0.064$	
S = 0.85	
3709 reflections	
265 parameters	

10350 measured reflections 3709 independent reflections 3202 reflections with $I > 2\sigma(I)$ $R_{int} = 0.054$

 $\begin{array}{l} \Delta \rho_{\rm max} = 1.02 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta \rho_{\rm min} = -0.49 \ {\rm e} \ {\rm \AA}^{-3} \\ {\rm Absolute \ structure: \ Flack \ (1983),} \\ 1836 \ {\rm Friedel \ pairs} \\ {\rm Flack \ parameter: \ -0.030 \ (7)} \end{array}$

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

We thank the State Program for Support of Leading Scientific Schools (grant LS-4645.2010.2.)

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2345).

References

- Block, S., Perloff, A. & Weir, C. E. (1964). Acta Cryst. 17, 314-315.
- Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- ICSD (2009). Inorganic Crystal Structure Database. FIZ–Karlsruhe, Germany, and the National Institute of Standards and Technology (*NIST*), USA. http://www.fiz–karlsruhe.de/icsd.html
- Imaoka, M. (1959). J. Ceram. Assoc. Jpn, 67, 364-366.
- Kim, J.-B., Lee, K.-S., Suh, I.-H., Lee, J.-H., Park, J.-R. & Shin, Y.-H. (1996). Acta Cryst. C52, 498–500.
- Lapshin, A. E., Litovchik, E. O., Polyakova, I. G. & Shepelev, Yu. F. (2007). Zh. Neorg. Khim. 52, 907–911.
- Lin, Q.-S., Cheng, W.-D., Chen, J.-T. & Huang, J.-S. (1999). J. Solid State Chem. 144, 30–34.
- Machida, K., Adachi, G. & Shiokawa, J. (1979). J. Lumin. 21, 101-110.
- Oseledchik, Y. S., Prosvirnin, A. I., Starshenko, V. V., Osadchuk, V., Pisarevsky, A. I., Belokrys, S. P., Korol, A. S., Svitanko, N. V., Krikunov, S. A. & Selevich, A. F. (1995). *Opt. Mater.* 4, 669–674.
- Pei, Z., Zeng, Q. & Su, Q. (2000). J. Phys. Chem. Solids, 61, 9-12.
- Petrov, V., Noack, F., Shen, D., Pan, F., Shen, G., Wang, X., Komatsu, R. & Volker, A. (2004). Opt. Lett. 29, 373–375.
- Polyakova, I. G. & Litovchik, E. O. (2008). Fiz. Khim. Stekla, 34, 488-502.
- Ross, N. L. & Angel, R. J. (1991). J. Solid State Chem. 90, 27-30.
- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tang, Z., Chen, X. & Li, M. (2008). Solid State Sci. 10, 894-900.
- Verwey, J. W. M., Dirksen, G. J. & Blasse, G. (1992). J. Phys. Chem. Solids, 53, 367–375.
- Wei, Z. F., Chen, X. L., Wang, F. M., Li, W. C., He, M. & Zhang, Y. (2001). J. Alloys Compd. 327, 10–13.
- Zaitsev, A. I., Aleksandrovsky, A. S., Zamkov, A. V. & Sysoev, A. M. (2006). Inorg. Mater. 42, 1360–1362.
- Zobetz, E. (1982). Z. Kristallogr. 160, 81-92.
- Zobetz, E. (1990). Z. Kristallogr. 191, 45-57.

Acta Cryst. (2010). E66, i48 [doi:10.1107/S1600536810019069]

The trigonal polymorph of strontium tetraborate, β -SrB₄O₇

A. D. Vasiliev, A. V. Cherepakhin and A. I. Zaitsev

Comment

The orthorhombic phase of strontium tetraborate, α -SrB₄O₇ (I), is known for a long time (Block *et al.*, 1964). This compound has attracted attention owing to its interesting physical properties, namely an unprecedented fundamental optical-absorption edge among oxide compounds (~130 nm), high non-linear optical coefficients (Oseledchik *et al.*, 1995; Petrov *et al.*, 2004; Zaitsev *et al.*, 2006), good luminescent characteristics and an ability to stabilize rare-earth elements in divalent state (Verwey *et al.*, 1992; Pei *et al.*, 2000; Machida *et al.*, 1979).

SrB₄O₇ falls in a glass-forming range within the SrO—B₂O₃ system and can simply be obtained as a glass (Imaoka, 1959). The process of glass re-crystallization occurs through complex mechanisms with probabilistic formation of other crystalline phases, specifically of metastable phases. Such a phase was in fact observed and designated as β -SrB₄O₇ (Polyakova & Litovchik, 2008). However, X-ray powder diffraction data of this phase and of two other new compounds described by these authors were not analysed because of impure samples.

The FIZ/NIST Inorganic Crystal Structure Database (release 2009; ICSD, 2009) reveals six phases in the SrO—B₂O₃ system besides (I): strontium diborate, (IIa), SrB₂O₄ (Kim *et al.*, 1996), its high-pressure form (Ross & Angel, 1991), (IIb), distrontium diborate, Sr₂B₂O₅, (III), (Lin *et al.*, 1999), tristrontium tetraborate, Sr₃B₂O₆, (IV), (Wei *et al.*, 2001), distrontium hexadecaborate, Sr₂B₁₆O₂₆, (V), (Tang *et al.*, 2008) and tetrastrontium tetradecaborate, Sr₄B₁₄O₂₅, (VI), (Lapshin *et al.*, 2007). Only two of these phases crystallize in non-centrosymmetric space groups, *viz.* (I, *Pmn*2₁ and VI, *Cmc*2₁). The main feature of all these structures are BO_x units (x = 3,4). Isolated (IV) or flat pairs (III) of BO₃ triangles, a framework of BO₄ tetrahedra with shared vertices (I, II) and a framework of triangles and tetrahedra with shared vertices (V, VI) are found in these structures.

In the process of glass re-crystallization of a strontium tetraborate composition at 973–983 K during one day, we obtained β -SrB₄O₇ crystals with dimensions of ~200–400 μ m. The crystals were located on the glass surface and were optically homogeneous (i.e. crystals showed homogeneous extinction when observed under a polarizing microscope). The crystals possess strong anisotropy when abrased, and crystals with an elongated ellipsoidal shape were obtained in such a way. As it turned out, the crystals are most firm along the *c*-direction.

The crystal structure of (I) is built up from a three-dimensional framework of connected boron-oxygen tetrahedra. The asymmetric unit of the title structure contains five Sr (three on special positions), twelve B and 21 O atoms. Alternatively, the structural formula of the title compound can thus be written as $Sr_3B_{12}O_{21}$. It consists of BO₃ triangles and BO₄ tetrahedra in an 1:1 ratio (3:1 for structure V and 3:4 for structure VI). They form a three-dimensional framework constructed *via* common vertices. The BO₃ triangles are linked to one another so that two of their vertices and the bridging O atom are located on a straight line (see O1, O3, O5; O6, O7, O10 and O11, O13, O15 in Fig.1). The plane of one triangle in such a pair is tilted relatively to the other one about the line with an angle of ~20°. The remaining two vertices are common with the same tetrahedron (e.g. see O2 and O4 in Fig.1). The BO₄ tetrahedra are connected to one another *via* common

vertices and form chains along the *c*-direction (Fig. 2). These chains are connected with pairs of BO₃ triangles, leading to the formation of channels in the structure. The channels are filled with strontium ions (Fig. 3). The coordination polyhedra around the strontium ions are non-regular and defined by six O atoms in the range 2.479 (3)–2.786 (3) Å when a distance < 2.8 Å is considered as relevant.

All vertices in the anionic framework are shared so that every oxygen atom is connected to two boron atoms. The B—O distances fall into the interval 1.323 (6)–1.420 (6)Å (average is 1.367 (6) Å) for BO₃ triangles and into the interval 1.425 (6)–1.538 (6) Å (average is 1.474 (6) Å) for BO₄ tetrahedra. These values compare well with the mean bond lengths calculated for various borate structures (Zobetz, 1982, 1990).

In comparison with α -SrB₄O₇ which is constructued solely from BO₄ tetrahedra, the density of the β -polymorph is considerably lower.

Experimental

Crystals were extracted out of glass by careful dissolving of the latter in a 2% HNO₃ solution. The initial glass has been made from a mixture of SrCO₃ (99.8%) and H₃BO₃ (99.98%) in a 1:4 ratio. The mixture was heated up to 353—363 K with addition of a small amount of water and careful mixing until CO₂ gas evolution had stopped. Then the temperature was increased slowly up to 573 K to yield a anhydrous phase. The derived mixture was then placed into a glass-carbon crucible and kept in a molten state at 1323 K during 6 h in a nitrogen atmosphere. The flux was cooled in air down to 773 K and the glass was finally annealed at 723 K during a day to remove strain.

Figures

Fig. 2. Columns of BO_4 tetrahedra with shared vertices and attached BO_3 triangles extending along the *c*-direction.

Fig. 3. View down [001] of the framework structure of the title compound showing the formation of channels that are filled with Sr^{2+} ions.

strontium tetraborate

Crystal data

SrB₄O₇ $M_r = 242.86$ Trigonal, P3 Hall symbol: P 3 a = 17.145 (1) Å c = 4.2527 (5) Å V = 1082.61 (16) Å³ Z = 9F(000) = 1026

Data collection

Bruker SMART CCD area-detector diffractometer	3709 independent reflections
Radiation source: fine-focus sealed tube	3202 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.054$
ϕ and ω scans	$\theta_{\text{max}} = 28.7^{\circ}, \ \theta_{\text{min}} = 2.4^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2004)	$h = -22 \rightarrow 23$
$T_{\min} = 0.095, T_{\max} = 0.242$	$k = -23 \rightarrow 23$
10350 measured reflections	$l = -5 \rightarrow 5$

Refinement

Refinement on F^2

Least-squares matrix: full	$w = 1/[\sigma^2(F_o^2) + (0.P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.030$	$(\Delta/\sigma)_{max} < 0.001$
$wR(F^2) = 0.064$	$\Delta \rho_{max} = 1.02 \text{ e} \text{ Å}^{-3}$
<i>S</i> = 0.85	$\Delta \rho_{\rm min} = -0.49 \text{ e } \text{\AA}^{-3}$
3709 reflections	Extinction correction: <i>SHELXTL</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
265 parameters	Extinction coefficient: 0.0794 (13)
0 restraints	Absolute structure: Flack (1983), 1836 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: -0.030 (7)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds

 $D_{\rm x} = 3.353 (1) \,{\rm Mg \,m}^{-3}$

 $\theta=2.4{-}29.3^\circ$

T = 296 K

 $\mu = 11.19 \text{ mm}^{-1}$

Ellipsoidal, colorless

 $0.40 \times 0.25 \times 0.18 \text{ mm}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2820 reflections

Secondary atom site location: difference Fourier map

in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Sr1	0.0000	0.0000	0.5000	0.0106 (2)
Sr2	0.6667	0.3333	0.7047 (2)	0.0097 (2)
Sr3	0.3333	0.6667	0.6084 (5)	0.01172 (15)
Sr4	0.32408 (4)	0.33158 (4)	0.7001 (4)	0.00732 (14)
Sr5	-0.00569 (3)	0.33541 (4)	0.5183 (4)	0.00743 (15)
01	0.3441 (2)	0.5031 (2)	0.5634 (9)	0.0115 (7)
O2	0.2472 (2)	0.3798 (2)	0.2476 (8)	0.0094 (7)
O3	0.2591 (2)	0.5240 (2)	0.1833 (8)	0.0108 (7)
O4	0.1239 (2)	0.3939 (2)	0.0012 (9)	0.0109 (7)
O5	0.1760 (2)	0.5441 (2)	-0.1939 (8)	0.0090 (7)
O6	0.1571 (2)	0.1803 (2)	0.4810 (9)	0.0119 (8)
O7	0.2841 (2)	0.2150 (2)	0.1685 (8)	0.0075 (6)
O8	0.1428 (2)	0.0790 (2)	0.0952 (8)	0.0109 (7)
09	0.2767 (2)	0.0826 (2)	-0.0917 (8)	0.0083 (7)
O10	0.1278 (2)	-0.0221 (2)	-0.2863 (8)	0.0095 (7)
O11	0.5201 (2)	0.3007 (2)	0.4426 (8)	0.0082 (7)
O12	0.4709 (2)	0.4061 (2)	0.3108 (8)	0.0077 (7)
O13	0.6000 (2)	0.4102 (2)	0.0726 (8)	0.0105 (7)
O14	0.5899 (2)	0.5436 (2)	0.0455 (8)	0.0065 (6)
O15	0.6814 (2)	0.5195 (2)	-0.3106 (8)	0.0082 (7)
O16	0.0899 (2)	0.2724 (2)	0.3487 (8)	0.0084 (7)
O17	0.1632 (2)	0.2814 (2)	0.8498 (8)	0.0085 (7)
O18	0.3864 (2)	0.1604 (2)	0.2995 (8)	0.0082 (7)
O19	0.3945 (2)	0.2362 (2)	0.7992 (8)	0.0062 (6)
O20	0.5007 (2)	0.5578 (2)	0.4336 (8)	0.0073 (7)
O21	0.4320 (2)	0.4828 (2)	0.9349 (8)	0.0067 (7)
B1	0.2862 (4)	0.4681 (4)	0.3246 (14)	0.0079 (10)*
B2	0.1811 (3)	0.4849 (3)	-0.0018 (13)	0.0059 (10)*
B3	0.1948 (3)	0.1620 (3)	0.2422 (13)	0.0075 (10)*
B4	0.1853 (4)	0.0444 (3)	-0.0934 (13)	0.0071 (10)*
B5	0.5250 (3)	0.3704 (3)	0.2794 (12)	0.0052 (9)*
B6	0.6277 (3)	0.4939 (3)	-0.0547 (13)	0.0063 (10)*
B7	0.1537 (4)	0.3283 (3)	0.1104 (13)	0.0048 (10)*
B8	0.1082 (3)	0.2266 (3)	0.5981 (12)	0.0052 (10)*
B9	0.3394 (4)	0.1748 (4)	0.0454 (12)	0.0064 (11)*
B10	0.4409 (3)	0.2160 (3)	0.5607 (12)	0.0063 (10)*
B11	0.4960 (4)	0.4991 (4)	0.1768 (13)	0.0076 (12)*
B12	0.4379 (3)	0.5431 (3)	0.6829 (12)	0.0061 (10)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters	(\mathring{A}^2)
Atomic alsplacement parameters	(A^{-})

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sr1	0.0098 (3)	0.0098 (3)	0.0121 (5)	0.00490 (15)	0.000	0.000
Sr2	0.0093 (3)	0.0093 (3)	0.0106 (5)	0.00466 (16)	0.000	0.000
Sr3	0.0100 (2)	0.0100 (2)	0.0151 (4)	0.00502 (10)	0.000	0.000
Sr4	0.0072 (3)	0.0066 (3)	0.0083 (3)	0.0036 (2)	0.0001 (3)	0.0014 (2)
Sr5	0.0072 (3)	0.0076 (3)	0.0082 (3)	0.0043 (2)	0.0007 (2)	0.0015 (2)
01	0.0055 (16)	0.0191 (19)	0.0082 (17)	0.0048 (15)	-0.0004 (14)	-0.0017 (14)
O2	0.0069 (16)	0.0074 (16)	0.0109 (17)	0.0014 (13)	-0.0039 (13)	0.0001 (13)
O3	0.0099 (16)	0.0065 (16)	0.0141 (18)	0.0027 (14)	-0.0075 (14)	-0.0033 (14)
O4	0.0090 (16)	0.0103 (17)	0.0153 (19)	0.0062 (14)	-0.0051 (14)	-0.0006 (14)
05	0.0074 (16)	0.0100 (17)	0.0091 (18)	0.0039 (14)	-0.0009 (13)	0.0018 (13)
O6	0.0139 (19)	0.0164 (18)	0.0101 (18)	0.0110 (16)	0.0039 (14)	0.0042 (15)
07	0.0080 (16)	0.0090 (16)	0.0058 (16)	0.0046 (14)	-0.0001 (13)	-0.0004 (13)
08	0.0065 (16)	0.0099 (16)	0.0148 (19)	0.0029 (14)	0.0034 (14)	-0.0030 (14)
09	0.0076 (16)	0.0109 (16)	0.0081 (16)	0.0059 (14)	0.0012 (13)	-0.0006 (13)
O10	0.0087 (17)	0.0060 (16)	0.0148 (19)	0.0044 (14)	-0.0046 (14)	-0.0022 (14)
011	0.0061 (16)	0.0095 (16)	0.0093 (17)	0.0042 (14)	0.0016 (13)	0.0018 (13)
012	0.0090 (16)	0.0090 (16)	0.0069 (16)	0.0057 (14)	0.0031 (13)	0.0025 (13)
013	0.0104 (17)	0.0078 (16)	0.0125 (18)	0.0039 (14)	0.0087 (13)	0.0050 (13)
014	0.0077 (15)	0.0062 (15)	0.0060 (16)	0.0039 (13)	0.0001 (13)	-0.0009 (12)
015	0.0086 (18)	0.0114 (18)	0.0048 (17)	0.0053 (15)	0.0040 (14)	0.0046 (14)
O16	0.0069 (16)	0.0130 (17)	0.0075 (16)	0.0066 (14)	0.0036 (13)	0.0026 (13)
017	0.0082 (16)	0.0092 (16)	0.0077 (17)	0.0041 (14)	-0.0004 (13)	-0.0023 (13)
O18	0.0081 (16)	0.0112 (16)	0.0079 (17)	0.0068 (14)	-0.0016 (13)	0.0003 (13)
019	0.0089 (15)	0.0083 (16)	0.0043 (16)	0.0065 (13)	0.0021 (12)	0.0017 (12)
O20	0.0099 (16)	0.0099 (16)	0.0038 (15)	0.0061 (14)	0.0024 (13)	0.0000 (12)
O21	0.0057 (15)	0.0066 (15)	0.0076 (17)	0.0029 (13)	-0.0009 (12)	0.0029 (13)

Geometric parameters (Å, °)

Sr1—O10 ⁱ	2.569 (3)	Sr5—B11 ^{xii}	3.171 (6)
Sr1—O10 ⁱⁱ	2.569 (3)	O1—B1	1.335 (6)
Sr1—O10 ⁱⁱⁱ	2.569 (3)	O1—B12	1.486 (6)
Sr1—O8 ^{iv}	2.734 (3)	O2—B1	1.354 (6)
Sr1—O8 ^v	2.734 (3)	O2—B7	1.509 (6)
Sr108	2.734 (3)	O2—Sr4 ^{xiv}	2.988 (3)
Sr1—06	2.913 (4)	O3—B1	1.392 (6)
Sr1—O6 ^v	2.913 (4)	O3—B2	1.401 (6)
Sr1—O6 ^{iv}	2.913 (4)	O3—Sr3 ^{xiv}	3.236 (3)
Sr1—B3	3.285 (5)	O4—B2	1.366 (6)
Sr1—B3 ^{iv}	3.285 (5)	O4—B7	1.521 (6)
Sr1—B3 ^v	3.285 (5)	O4—Sr5 ^{xiv}	2.816 (3)
Sr2—O11 ^{vi}	2.542 (3)	O5—B2	1.340 (6)

Sr2—O11 ^{vii}	2.542 (3)	O5—B12 ^{xv}	1.489 (6)
Sr2—O11	2.542 (3)	O5—Sr3 ^{xiv}	2.594 (3)
Sr2—O13 ^{viii}	2.644 (3)	O6—B3	1.323 (6)
Sr2—O13 ^{ix}	2.644 (3)	O6—B8	1.499 (6)
Sr2—O13 ⁱⁱ	2.644 (3)	O7—B3	1.370 (6)
Sr2—O15 ^{viii}	3.074 (3)	O7—B9	1.517 (6)
Sr2—O15 ^{ix}	3.074 (3)	O7—Sr4 ^{xiv}	2.657 (3)
Sr2—O15 ⁱⁱ	3.074 (3)	O8—B3	1.394 (6)
Sr2—B6 ^{viii}	3.303 (5)	O8—B4	1.399 (6)
Sr2—B6 ^{ix}	3.303 (5)	O8—Sr1 ^{xiv}	3.304 (3)
Sr2—B6 ⁱⁱ	3.303 (5)	O9—B4	1.364 (6)
Sr3—O5 ^x	2.594 (3)	O9—B9	1.516 (6)
Sr3—O5 ⁱⁱ	2.594 (3)	O9—Sr5 ^{xvi}	2.676 (3)
Sr3—O5 ^{xi}	2.594 (3)	O10—B4	1.349 (6)
Sr3—O3 ^{xii}	2.786 (3)	O10—B8 ^{xvi}	1.487 (5)
Sr3—O3	2.786 (3)	O10—Sr1 ^{xiv}	2.569 (3)
Sr3—O3 ^{xiii}	2.786 (3)	O11—B5	1.348 (6)
Sr3—O1 ^{xii}	2.908 (3)	O11—B10	1.494 (6)
Sr3—O1 ^{xiii}	2.908 (3)	O12—B5	1.350 (6)
Sr3—O1	2.908 (3)	O12—B11	1.537 (6)
Sr3—O3 ^x	3.236 (3)	O13—B6	1.377 (6)
Sr3—O3 ^{xi}	3.236 (4)	O13—B5	1.419 (6)
Sr3—O3 ⁱⁱ	3.236 (4)	O13—Sr2 ^{xiv}	2.644 (3)
Sr4—O19	2.507 (3)	O14—B6	1.371 (6)
Sr4—O21	2.519 (3)	O14—B11	1.503 (6)
Sr4—017	2.526 (3)	O14—Sr5 ^{xiii}	2.657 (3)
Sr4—O7 ⁱⁱ	2.657 (3)	O14—Sr5 ^{xvii}	2.836 (3)
Sr4—O2	2.685 (3)	O15—B6	1.349 (6)
Sr4—012	2.737 (3)	O15—B10 ^{xviii}	1.501 (6)
Sr4—O1	2.845 (4)	O15—Sr5 ^{xvii}	2.649 (3)
Sr4—07	2.864 (3)	O15—Sr2 ^{xiv}	3.074 (3)
Sr4—O6	2.893 (4)	O16—B8	1.445 (6)
$Sr4-O2^{11}$	2.988 (3)	O16—B7	1.447 (6)
Sr4—B12	3.145 (5)	O17—B8	1.425 (6)
Sr4—BI	3.158 (5)	017—B7"	1.426 (6)
	2.479 (3)	018	1.441 (6)
Sr5	2.402 (3) 2.520 (2)		1.400 (0) 2.520 (2)
Sr5—018 [*]	2.339 (3)	018—Sr5"	2.339 (3)
Sr5—O15 [*]	2.049 (3)		1.434 (6)
Sr5—O14 ^{xii}	2.657 (3)	019—B9"	1.450 (5)
Sr5—O9'	2.676 (3)	O20—B12	1.440 (6)
Sr504 ¹¹	2.816 (3)	O20—B11	1.460 (6)

Sr5—O14 ^x	2.836 (3)	O20—Sr5 ^{xiii}	2.482 (3)
Sr5—O4	2.924 (4)	O21—B11 ⁱⁱ	1.425 (6)
Sr5—B10 ^v	3.129 (5)	O21—B12	1.458 (6)
Sr5—B6 ^x	3.149 (5)		
O10 ⁱ —Sr1—O10 ⁱⁱ	108.20 (8)	O7—Sr4—O2 ⁱⁱ	145.41 (8)
O10 ⁱ —Sr1—O10 ⁱⁱⁱ	108.20 (8)	O6—Sr4—O2 ⁱⁱ	97.10 (9)
O10 ⁱⁱ —Sr1—O10 ⁱⁱⁱ	108.20 (8)	O16—Sr5—O20 ^{xii}	116.34 (10)
O10 ⁱ —Sr1—O8 ^{iv}	155.68 (11)	O16—Sr5—O18 ^v	104.21 (10)
O10 ⁱⁱ —Sr1—O8 ^{iv}	94.57 (10)	$O20^{xii}$ —Sr5—O18 ^v	119.04 (10)
O10 ⁱⁱⁱ —Sr1—O8 ^{iv}	71.17 (10)	O16—Sr5—O15 ^x	152.34 (10)
O10 ⁱ —Sr1—O8 ^v	71.17 (10)	$O20^{xii}$ —Sr5—O15 ^x	90.34 (10)
O10 ⁱⁱ —Sr1—O8 ^v	155.68 (11)	O18 ^v —Sr5—O15 ^x	52.72 (10)
O10 ⁱⁱⁱ —Sr1—O8 ^v	94.57 (10)	O16—Sr5—O14 ^{xii}	112.32 (11)
O8 ^{iv} —Sr1—O8 ^v	84.57 (11)	O20 ^{xii} —Sr5—O14 ^{xii}	54.17 (10)
O10 ⁱ —Sr1—O8	94.57 (10)	O18 ^v —Sr5—O14 ^{xii}	69.52 (10)
O10 ⁱⁱ —Sr1—O8	71.17 (10)	O15 ^x —Sr5—O14 ^{xii}	76.45 (10)
O10 ⁱⁱⁱ —Sr1—O8	155.68 (11)	O16—Sr5—O9 ⁱ	85.40 (10)
08 ^{iv} —Sr1—O8	84.57 (11)	O20 ^{xii} —Sr5—O9 ⁱ	148.56 (12)
O8 ^v —Sr1—O8	84.57 (11)	O18 ^v —Sr5—O9 ⁱ	72.45 (10)
O10 ⁱ —Sr1—O6	49.69 (9)	O15 ^x —Sr5—O9 ⁱ	73.60 (10)
O10 ⁱⁱ —Sr1—O6	76.23 (9)	O14 ^{xii} —Sr5—O9 ⁱ	140.89 (9)
O10 ⁱⁱⁱ —Sr1—O6	156.14 (11)	O16—Sr5—O4 ⁱⁱ	77.96 (10)
O8 ^{iv} —Sr1—O6	132.54 (10)	O20 ^{xii} —Sr5—O4 ⁱⁱ	83.34 (10)
O8 ^v —Sr1—O6	86.46 (9)	O18 ^v —Sr5—O4 ⁱⁱ	151.29 (11)
O8—Sr1—O6	48.18 (9)	$O15^{x}$ —Sr5— $O4^{ii}$	114.40 (11)
$O10^{i}$ —Sr1— $O6^{v}$	76.23 (9)	O14 ^{xii} —Sr5—O4 ⁱⁱ	136.93 (9)
$O10^{ii}$ —Sr1— $O6^{v}$	156.14 (11)	O9 ⁱ —Sr5—O4 ⁱⁱ	79.29 (10)
$O10^{iii}$ —Sr1— $O6^{v}$	49.69 (9)	O16—Sr5—O14 ^x	142.36 (10)
$O8^{iv}$ —Sr1—O6 ^v	86.46 (9)	$O20^{xii}$ —Sr5—O14 ^x	70.68 (10)
$O8^{v}$ —Sr1— $O6^{v}$	48.18 (9)	$O18^{v}$ —Sr5— $O14^{x}$	102.82 (9)
$O8$ — $Sr1$ — $O6^{v}$	132.54 (10)	$O15^{x}$ —Sr5—O14 ^x	50.85 (9)
$O6$ — $Sr1$ — $O6^{v}$	119.923 (7)	$O14^{xii}$ —Sr5— $O14^{x}$	101.42 (10)
$O10^{i}$ —Sr1—O6 ^{iv}	156.14 (11)	$O9^{i}$ —Sr5—O14 ^x	78.32 (9)
$O10^{ii}$ —Sr1— $O6^{iv}$	49.69 (9)	O4 ⁱⁱ —Sr5—O14 ^x	65.84 (10)
O10 ⁱⁱⁱ —Sr1—O6 ^{iv}	76.23 (9)	O16—Sr5—O4	51.39 (10)
$O8^{iv}$ —Sr1—O6 ^{iv}	48.18 (9)	O20 ^{xii} —Sr5—O4	71.17 (10)
$O8^{v}$ —Sr1—O6 ^{iv}	132.54 (10)	O18 ^v —Sr5—O4	108.16 (10)
08—Sr1—O6 ^{iv}	86.46 (9)	O15 ^x —Sr5—O4	142.90 (10)
06—Sr1—O6 ^{iv}	119.923 (8)	O14 ^{xii} —Sr5—O4	66.60 (9)
$O6^{v}$ —Sr1— $O6^{iv}$	119.923 (8)	O9 ⁱ —Sr5—O4	136.26 (9)

$O11^{vi}$ —Sr2— $O11^{vii}$	102.21 (9)	O4 ⁱⁱ —Sr5—O4	95.60 (10)
O11 ^{vi} —Sr2—O11	102.21 (9)	O14 ^x —Sr5—O4	139.09 (9)
O11 ^{vii} —Sr2—O11	102.21 (9)	B1—O1—B12	149.0 (4)
O11 ^{vi} —Sr2—O13 ^{viii}	94.41 (10)	B1—O1—Sr4	90.7 (3)
O11 ^{vii} —Sr2—O13 ^{viii}	75.13 (10)	B12—O1—Sr4	87.2 (2)
O11—Sr2—O13 ^{viii}	163.33 (10)	B1—O1—Sr3	95.2 (3)
O11 ^{vi} —Sr2—O13 ^{ix}	75.13 (10)	B12—O1—Sr3	96.2 (3)
O11 ^{vii} —Sr2—O13 ^{ix}	163.33 (10)	Sr4—O1—Sr3	161.90 (14)
O11—Sr2—O13 ^{ix}	94.41 (10)	B1—O2—B7	122.2 (4)
O13 ^{viii} —Sr2—O13 ^{ix}	88.58 (11)	B1—O2—Sr4	97.3 (3)
O11 ^{vi} —Sr2—O13 ⁱⁱ	163.33 (10)	B7—O2—Sr4	129.7 (3)
O11 ^{vii} —Sr2—O13 ⁱⁱ	94.41 (10)	B1—O2—Sr4 ^{xiv}	117.3 (3)
O11—Sr2—O13 ⁱⁱ	75.13 (10)	B7—O2—Sr4 ^{xiv}	91.4 (3)
O13 ^{viii} —Sr2—O13 ⁱⁱ	88.58 (11)	Sr4—O2—Sr4 ^{xiv}	96.96 (10)
O13 ^{ix} —Sr2—O13 ⁱⁱ	88.58 (11)	B1—O3—B2	118.8 (4)
O11 ^{vi} —Sr2—O15 ^{viii}	48.77 (9)	B1—O3—Sr3	99.3 (3)
O11 ^{vii} —Sr2—O15 ^{viii}	77.18 (10)	B2—O3—Sr3	133.8 (3)
O11—Sr2—O15 ^{viii}	148.54 (9)	B1—O3—Sr3 ^{xiv}	134.9 (3)
O13 ^{viii} —Sr2—O15 ^{viii}	47.70 (9)	B2—O3—Sr3 ^{xiv}	81.8 (3)
O13 ^{ix} —Sr2—O15 ^{viii}	89.33 (9)	Sr3—O3—Sr3 ^{xiv}	89.54 (8)
O13 ⁱⁱ —Sr2—O15 ^{viii}	136.27 (10)	B2—O4—B7	122.2 (4)
O11 ^{vi} —Sr2—O15 ^{ix}	77.18 (10)	B2—O4—Sr5 ^{xiv}	112.8 (3)
O11 ^{vii} —Sr2—O15 ^{ix}	148.54 (9)	B7—O4—Sr5 ^{xiv}	117.1 (3)
O11—Sr2—O15 ^{ix}	48.77 (9)	B2—O4—Sr5	112.8 (3)
O13 ^{viii} —Sr2—O15 ^{ix}	136.27 (10)	B7—O4—Sr5	89.7 (2)
O13 ^{ix} —Sr2—O15 ^{ix}	47.70 (9)	Sr5 ^{xiv} —O4—Sr5	95.60 (10)
O13 ⁱⁱ —Sr2—O15 ^{ix}	89.33 (9)	B2—O5—B12 ^{xv}	137.7 (4)
O15 ^{viii} —Sr2—O15 ^{ix}	119.955 (5)	B2—O5—Sr3 ^{xiv}	112.1 (3)
O11 ^{vi} —Sr2—O15 ⁱⁱ	148.54 (9)	B12 ^{xv} —O5—Sr3 ^{xiv}	110.1 (2)
O11 ^{vii} —Sr2—O15 ⁱⁱ	48.77 (9)	B3—O6—B8	148.2 (4)
011—Sr2—015 ⁱⁱ	77.18 (10)	B3—O6—Sr4	94.5 (3)
013 ^{viii} —Sr2—O15 ⁱⁱ	89.33 (9)	B8—O6—Sr4	89.0 (2)
O13 ^{ix} —Sr2—O15 ⁱⁱ	136.27 (10)	B3—O6—Sr1	94.1 (3)
O13 ⁱⁱ —Sr2—O15 ⁱⁱ	47.70 (9)	B8—O6—Sr1	95.1 (2)
O15 ^{viii} —Sr2—O15 ⁱⁱ	119.955 (6)	Sr4—O6—Sr1	156.60 (14)
O15 ^{ix} —Sr2—O15 ⁱⁱ	119.955 (5)	В3—07—В9	121.5 (4)
O5 ^x —Sr3—O5 ⁱⁱ	110.02 (8)	B3—O7—Sr4 ^{xiv}	116.9 (3)
O5 ^x —Sr3—O5 ^{xi}	110.02 (8)	B9—O7—Sr4 ^{xiv}	95.6 (2)
O5 ⁱⁱ —Sr3—O5 ^{xi}	110.02 (8)	B3—O7—Sr4	94.6 (3)
O5 ^x —Sr3—O3 ^{xii}	70.47 (10)	B9—O7—Sr4	127.1 (3)
O5 ⁱⁱ —Sr3—O3 ^{xii}	94.31 (9)	Sr4 ^{xiv} —O7—Sr4	100.68 (10)

O5 ^{xi} —Sr3—O3 ^{xii}	152.90 (11)	B3—O8—B4	119.2 (4)
O5 ^x —Sr3—O3	152.90 (11)	B3—O8—Sr1	100.4 (3)
O5 ⁱⁱ —Sr3—O3	70.47 (10)	B4—O8—Sr1	132.7 (3)
O5 ^{xi} —Sr3—O3	94.31 (9)	B3—O8—Sr1 ^{xiv}	136.6 (3)
O3 ^{xii} —Sr3—O3	82.43 (11)	B4—O8—Sr1 ^{xiv}	79.8 (3)
O5 ^x —Sr3—O3 ^{xiii}	94.31 (9)	Sr1—O8—Sr1 ^{xiv}	89.02 (8)
O5 ⁱⁱ —Sr3—O3 ^{xiii}	152.90 (11)	B4—O9—B9	123.2 (4)
O5 ^{xi} —Sr3—O3 ^{xiii}	70.47 (10)	B4—O9—Sr5 ^{xvi}	114.8 (3)
O3 ^{xii} —Sr3—O3 ^{xiii}	82.43 (11)	B9—O9—Sr5 ^{xvi}	120.0 (2)
O3—Sr3—O3 ^{xiii}	82.43 (11)	B4—O10—B8 ^{xvi}	135.4 (4)
O5 ^x —Sr3—O1 ^{xii}	77.41 (9)	B4—O10—Sr1 ^{xiv}	114.0 (3)
O5 ⁱⁱ —Sr3—O1 ^{xii}	49.47 (9)	B8 ^{xvi} —O10—Sr1 ^{xiv}	110.6 (3)
O5 ^{xi} —Sr3—O1 ^{xii}	158.70 (11)	B5—O11—B10	131.2 (4)
O3 ^{xii} —Sr3—O1 ^{xii}	48.06 (9)	B5—O11—Sr2	114.5 (3)
O3—Sr3—O1 ^{xii}	84.14 (10)	B10—O11—Sr2	112.6 (3)
O3 ^{xiii} —Sr3—O1 ^{xii}	129.98 (11)	B5—O12—B11	122.3 (4)
O5 ^x —Sr3—O1 ^{xiii}	49.47 (9)	B5—O12—Sr4	121.9 (3)
O5 ⁱⁱ —Sr3—O1 ^{xiii}	158.70 (10)	B11—O12—Sr4	115.1 (3)
O5 ^{xi} —Sr3—O1 ^{xiii}	77.41 (9)	B6—O13—B5	120.1 (4)
O3 ^{xii} —Sr3—O1 ^{xiii}	84.14 (10)	B6—O13—Sr2 ^{xiv}	106.1 (3)
O3—Sr3—O1 ^{xiii}	129.98 (11)	B5—O13—Sr2 ^{xiv}	129.8 (3)
O3 ^{xiii} —Sr3—O1 ^{xiii}	48.06 (9)	B6—O14—B11	121.3 (4)
O1 ^{xii} —Sr3—O1 ^{xiii}	119.572 (18)	B6—O14—Sr5 ^{xiii}	119.7 (3)
O5 ^x —Sr3—O1	158.70 (11)	B11—O14—Sr5 ^{xiii}	95.3 (3)
O5 ⁱⁱ —Sr3—O1	77.41 (9)	B6—O14—Sr5 ^{xvii}	89.9 (3)
O5 ^{xi} —Sr3—O1	49.47 (9)	B11—O14—Sr5 ^{xvii}	130.0 (3)
O3 ^{xii} —Sr3—O1	129.98 (11)	Sr5 ^{xiii} —O14—Sr5 ^{xvii}	101.42 (10)
O3—Sr3—O1	48.06 (9)	B6—O15—B10 ^{xviii}	147.5 (4)
O3 ^{xiii} —Sr3—O1	84.14 (9)	B6—O15—Sr5 ^{xvii}	98.7 (3)
O1 ^{xii} —Sr3—O1	119.572 (19)	B10 ^{xviii} —O15—Sr5 ^{xvii}	93.8 (2)
O1 ^{xiii} —Sr3—O1	119.572 (19)	B6—O15—Sr2 ^{xiv}	87.5 (3)
$O5^{x}$ —Sr3— $O3^{x}$	44.45 (9)	B10 ^{xviii} —O15—Sr2 ^{xiv}	89.5 (2)
O5 ⁱⁱ —Sr3—O3 ^x	68.82 (9)	Sr5 ^{xvii} —O15—Sr2 ^{xiv}	162.45 (13)
$O5^{xi}$ —Sr3— $O3^{x}$	109.89 (10)	B8—O16—B7	125.3 (4)
$O3^{xii}$ —Sr3— $O3^{x}$	89.54 (8)	B8—O16—Sr5	113.2 (3)
$O3$ — $Sr3$ — $O3^x$	137.69 (4)	B7—O16—Sr5	111.1 (3)
$O3^{xiii}$ —Sr3— $O3^{x}$	137.69 (4)	B8—O17—B7 ⁱⁱ	137.0 (4)
$O1^{xii}$ —Sr3— $O3^{x}$	60.73 (9)	B8—O17—Sr4	106.5 (3)
$O1^{xiii}$ —Sr3— $O3^{x}$	89.91 (9)	B7 ⁱⁱ —O17—Sr4	114.7 (3)
O1—Sr3—O3 ^x	129.76 (10)	B9—O18—B10	133.6 (4)
$O5^{x}$ —Sr3— $O3^{xi}$	68.82 (9)	B9—O18—Sr5 ^{iv}	123.3 (3)

O5 ⁱⁱ —Sr3—O3 ^{xi}	109.89 (10)	B10—O18—Sr5 ^{iv}	99.5 (3)
O5 ^{xi} —Sr3—O3 ^{xi}	44.45 (9)	B10-019-B9 ⁱⁱ	125.1 (4)
O3 ^{xii} —Sr3—O3 ^{xi}	137.69 (4)	B10—O19—Sr4	123.0 (3)
O3—Sr3—O3 ^{xi}	137.69 (4)	B9 ⁱⁱ —O19—Sr4	104.1 (3)
O3 ^{xiii} —Sr3—O3 ^{xi}	89.54 (8)	B12—O20—B11	130.6 (4)
O1 ^{xii} —Sr3—O3 ^{xi}	129.76 (10)	B12—O20—Sr5 ^{xiii}	120.1 (3)
O1 ^{xiii} —Sr3—O3 ^{xi}	60.73 (9)	B11—O20—Sr5 ^{xiii}	104.0 (3)
O1—Sr3—O3 ^{xi}	89.91 (9)	B11 ⁱⁱ —O21—B12	128.2 (4)
O3 ^x —Sr3—O3 ^{xi}	69.12 (9)	O1—B1—O2	121.8 (5)
O5 ^x —Sr3—O3 ⁱⁱ	109.89 (10)	O1—B1—O3	116.7 (4)
O5 ⁱⁱ —Sr3—O3 ⁱⁱ	44.45 (9)	O2—B1—O3	121.1 (4)
O5 ^{xi} —Sr3—O3 ⁱⁱ	68.82 (9)	O5—B2—O4	126.2 (4)
O3 ^{xii} —Sr3—O3 ⁱⁱ	137.69 (4)	O5—B2—O3	112.9 (4)
O3—Sr3—O3 ⁱⁱ	89.54 (8)	O4—B2—O3	120.6 (4)
O3 ^{xiii} —Sr3—O3 ⁱⁱ	137.69 (4)	O6—B3—O7	122.4 (4)
O1 ^{xii} —Sr3—O3 ⁱⁱ	89.91 (9)	O6—B3—O8	116.6 (4)
O1 ^{xiii} —Sr3—O3 ⁱⁱ	129.76 (10)	O7—B3—O8	120.5 (4)
O1—Sr3—O3 ⁱⁱ	60.73 (9)	O10—B4—O9	125.9 (4)
O3 ^x —Sr3—O3 ⁱⁱ	69.12 (9)	O10—B4—O8	113.1 (4)
O3 ^{xi} —Sr3—O3 ⁱⁱ	69.12 (9)	O9—B4—O8	120.7 (4)
O19—Sr4—O21	105.01 (10)	O11—B5—O12	126.8 (4)
O19—Sr4—O17	122.38 (10)	O11—B5—O13	112.6 (4)
O21—Sr4—O17	111.46 (10)	O12—B5—O13	120.4 (4)
O19—Sr4—O7 ⁱⁱ	53.90 (9)	O15—B6—O14	120.4 (4)
O21—Sr4—O7 ⁱⁱ	104.90 (10)	O15—B6—O13	118.6 (4)
O17—Sr4—O7 ⁱⁱ	74.20 (10)	O14—B6—O13	120.1 (4)
O19—Sr4—O2	142.35 (11)	O17 ^{xiv} —B7—O16	115.6 (4)
O21—Sr4—O2	100.85 (10)	O17 ^{xiv} —B7—O2	104.0 (4)
O17—Sr4—O2	70.44 (10)	O16—B7—O2	110.3 (4)
07 ⁱⁱ —Sr4—O2	141.90 (9)	O17 ^{xiv} —B7—O4	110.8 (4)
O19—Sr4—O12	77.05 (9)	O16—B7—O4	106.4 (4)
O21—Sr4—O12	74.24 (10)	O2—B7—O4	109.7 (4)
O17—Sr4—O12	154.69 (11)	O17—B8—O16	116.4 (4)
07 ⁱⁱ —Sr4—O12	129.48 (9)	O17—B8—O10 ⁱ	111.8 (4)
O2—Sr4—O12	84.31 (10)	O16—B8—O10 ⁱ	109.5 (4)
O19—Sr4—O1	149.31 (10)	O17—B8—O6	103.8 (4)
O21—Sr4—O1	50.97 (9)	O16—B8—O6	112.0 (4)
O17—Sr4—O1	87.17 (10)	O10 ⁱ —B8—O6	102.2 (3)
07 ⁱⁱ —Sr4—O1	141.53 (10)	O18—B9—O19 ^{xiv}	116.7 (4)
O2—Sr4—O1	50.18 (10)	O18—B9—O9	105.9 (4)
O12—Sr4—O1	77.65 (9)	O19 ^{xiv} —B9—O9	110.2 (4)
O19—Sr4—O7	72.72 (9)	O18—B9—O7	110.4 (4)

O21—Sr4—O7	145.82 (10)	O19 ^{xiv} —B9—O7	104.4 (3)
O17—Sr4—O7	96.98 (10)	O9—B9—O7	109.2 (4)
O7 ⁱⁱ —Sr4—O7	100.68 (10)	O19—B10—O18	116.4 (4)
O2—Sr4—O7	70.49 (10)	O19—B10—O11	110.3 (4)
O12—Sr4—O7	72.05 (9)	O18—B10—O11	110.7 (4)
O1—Sr4—O7	115.02 (10)	O19—B10—O15 ^{ix}	111.6 (4)
O19—Sr4—O6	93.03 (10)	O18—B10—O15 ^{ix}	102.4 (3)
O21—Sr4—O6	159.89 (10)	O11—B10—O15 ^{ix}	104.5 (3)
O17—Sr4—O6	49.69 (10)	O21 ^{xiv} —B11—O20	116.5 (4)
O7 ⁱⁱ —Sr4—O6	78.44 (10)	O21 ^{xiv} —B11—O14	110.8 (4)
O2—Sr4—O6	68.12 (10)	O20—B11—O14	104.6 (4)
O12—Sr4—O6	119.38 (10)	O21 ^{xiv} —B11—O12	106.0 (4)
O1—Sr4—O6	114.52 (9)	O20—B11—O12	109.2 (4)
O7—Sr4—O6	48.38 (9)	O14—B11—O12	109.7 (4)
O19—Sr4—O2 ⁱⁱ	118.18 (10)	O20—B12—O21	116.5 (4)
O21—Sr4—O2 ⁱⁱ	66.73 (10)	O20—B12—O1	111.7 (4)
O17—Sr4—O2 ⁱⁱ	48.74 (9)	O21—B12—O1	104.4 (4)
O7 ⁱⁱ —Sr4—O2 ⁱⁱ	68.92 (9)	O20—B12—O5 ^{xi}	109.0 (4)
O2—Sr4—O2 ⁱⁱ	96.96 (10)	O21—B12—O5 ^{xi}	111.8 (4)
O12—Sr4—O2 ⁱⁱ	140.51 (9)	O1—B12—O5 ^{xi}	102.5 (3)
O1—Sr4—O2 ⁱⁱ	73.46 (9)		

Symmetry codes: (i) -y, x-y, z+1; (ii) x, y, z+1; (iii) -x+y, -x, z+1; (iv) -x+y, -x, z; (v) -y, x-y, z; (vi) -y+1, x-y, z; (vii) -x+y+1, -x+1, z; (viii) -x+y+1, -x+1, z+1; (ix) -y+1, x-y+1, z+1; (ix) -y+1, x-y+1, z+1; (ix) -y+1, z-y+1, z; (viii) -x+y, -x+1, z; (viii) -y+1, x-y+1, z+1; (iv) -x+y, -x+1, z; (viii) -y+1, x-y+1, z-1; (viii) -x+y, -x+1, z-1; (viii) -x+y, -x+1, z-1; (viii) -x+y+1, -x+1, z-1:

Fig. 1

